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∗Abstract - The pervasive use of wireless networks and mobile 
devices has been changing our living style significantly. Along 
with great convenience and efficiency, there are new challenges 
in protecting sensitive and/or private data carried in these 
devices. The most challenging part lies in a dilemma: while it 
should be computationally infeasible for adversaries to decrypt 
the data, the cryptographic operation should be efficient for 
legitimate users and minimize battery drain. This paper 
proposes a novel data encryption and storage scheme to 
address this challenge. Treating the data as a binary bit 
stream, our self-encryption (SE) scheme generates a keystream 
by randomly extracting bits from the stream. The length of the 
keystream depends on the user’s security requirements. The 
bit stream is encrypted and the ciphertext is stored on the 
mobile device, whereas the keystream is stored separately. This 
makes it computationally not feasible to recover the original 
data stream from the ciphertext alone. 
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1. Introduction 
The pervasive use of wireless networks and mobile 

devices has been changing our living style significantly [5], 
[25]. Along with great convenience and efficiency, the 
progress of technology also brings new challenges in 
protecting sensitive and/or private information carried in 
these devices [14]. New vulnerability results from unique 
characteristics of mobile devices. For instance, due to 
constraints imposed by limited computing power, storage 
space, and battery lifetime, a light-weight rather than 
computing intensive and complex encryption algorithm is 
desired in the mobile devices [1].  

In addition, portability makes mobile devices prone to 
being stolen or lost. It is very challenging to protect the 
weakly encrypted information on a mobile device, which 
might end up in the hands of an adversary, who could then 
use powerful cryptanalysis tools to break the encryption 
[21]. Therefore, security solutions developed for general 
distributed data storage systems cannot be adopted directly 
for this new frontier.  

Statistics show that 22% of PDA owners have lost their 
devices, and 81% of those lost devices had no protection. 
Even worse, 37% of PDAs have sensitive information on 
them, such as bank account information, corporate data, 
passwords, and more [28]. For this reason, some companies 
do not allow employees to use PDAs or similar mobile 
devices to store company data [26]. However, effective 
protection that would enable the full and convenient use of 
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these devices without the fear of losing or compromising 
data would be a much better scenario. 

The most challenging part of mobile device data 
protection lies in the conflicting requirements for the data 
encryption scheme. While it should be computationally 
infeasible for adversaries to decrypt the data in captured 
mobile devices, the encryption/decryption operation should 
be reasonably efficient for legitimate users. Furthermore, the 
required computations should not consume too much energy 
so as to minimize battery drain. 

This research proposes a novel stream cipher scheme 
called self-encryption (SE) to address this dilemma. 
Treating the data set as a binary bit stream, we generate the 
keystream by extracting n bits in a pseudorandom manner 
based on a user’s unique PIN and a nonce. The length of the 
keystream n is flexible and depends on the security 
requirements. Then we encrypt the remaining bit stream 
using this keystream.  

The encrypted remainder is stored in the mobile device, 
whereas the keystream is stored separately. It is very 
difficult to recover the original data stream from the 
ciphertext even if an adversary has the knowledge of the 
encryption algorithm. The variable length keystream makes 
brute force attacks infeasible, and the decrypted data stream 
is still unrecognizable unless the keystream bits are inserted 
to the original position. 

The rest of the paper is organized as follows: Section 2 
provides a brief review of related work. Section 3 presents 
the framework of our self-encryption (SE) scheme and the 
detailed SE design. Section 4 proposes a protocol that 
specifies the behavior of both mobile devices and the secure 
server to support the SE operations. Section 5 summarizes 
this paper with an introduction to our on-going efforts. 

2. Related Work 
Securing sensitive and/or private data in mobile 

communication has been an important topic in security 
research community [8], [19], [25]. Our research is relative 
to two main areas: modern stream cipher design and 
distributed data security. 

A. Modern Stream Cipher Design 
Stream ciphers are widely used to protect sensitive data 

at fast speeds [3], [27]. Although block ciphers have been 
attracting more and more attention, stream ciphers still are 
very important, particularly for military applications and to 
the academic research community. Stream ciphers are more 
suitable in environments where tight resource constraints are 
applied, i.e. in wireless mobile devices [4], [27], or wireless 
sensor networks [8]. When there is a need to encrypt large 
amount of streaming data, a stream cipher is preferred [3].  
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In recent years, a lot of efforts have been reported in this 
area and many interesting new stream ciphers have been 
proposed and analyzed. A popular trend in stream cipher 
design is to turn to block-wise stream ciphers like RC4, 
SNOW 2.0, and SCREAM [16]. In order to improve the 
time-data-memory tradeoff for stream cipher, a concept of 
Hellman’s time-memory tradeoff [4] has been applied and it 
achieved obvious improvements [12]. The Goldreich-Levin 
[11] one-way function hard-core bit construction has been 
enhanced into a more efficient pseudo-random number 
generator BMGL [15] with a proof of security. 

Efficient hardware implementations of stream ciphers 
are important in both high-performance and low-power 
applications [16]. This is the main trend of the stream cipher 
development in the future. Researchers have pointed out that 
RFID (Radio Frequency Identification) could be one of the 
next killer applications for hardware-oriented stream ciphers 
[27]. The second phase of the eSTREAM project in 
particular focused stream ciphers suited toward hardware 
implementation and currently there are eight families of 
hardware-oriented stream ciphers [7]. 

Normally there are two input parameters to a stream 
cipher, the password and an initialization vector (IV). In 
contrast with the user password being kept secret, the IV is 
public. As a consequence, attacks against the IV setup of 
stream cipher have been very successful [29]. Due to the 
weakness with the IV setup, more than 25% of the stream 
ciphers submitted to the eSTREAM project in May 2005 
have been broken [2]. Some seemingly robust academic 
designs were broken also due to problems with the IV setup 
[29]. 

In this paper, we will investigate an alternative design 
approach for the self-encryption stream cipher scheme to 
avoid the shortcomings incurred by using public IV. Also, 
the robustness of a fixed length keystream has been 
weakened as the computing power which an adversary 
possesses has been growing. Instead, a variant length 
keystream will make brute force attacks computationally 
infeasible. To reach this goal, this paper will also introduce 
a novel keystream generation scheme. 

B. Distributed Data Security 
Effective data protection solution is one of the essential 

security requirements that affect the acceptance of next 
generation pervasive computing [10] and the mobile device 
utilization in enterprise networks [5]. The rapid increase of 
sensitive data and the growing number of government 
regulations require long-term data retention to storage 
security [26]. During the data’s life cycle, there are a lot of 
potential attack points. In past decades, many researchers 
have contributed in this area. Among the reported works, 
here we skip the great achievements in network file system 
since they are not very relative to the proposed project. 
Instead, we will briefly introduce the recent progress in 
security services for distributed data storage protection. 

Data should be protected during the whole life cycle. 
Authentication and authorization are the preliminary 

requirements in most data security systems [23]. In general, 
authentication can be implemented using techniques such as 
passwords, digital signatures, or MAC (Message 
Authentication Code). Authorization can be performed by 
certificates, access control, etc. Considering the risks of 
system crash or denial-of-service, availability is required in 
most commercial systems. Typical solution is to make 
duplicated backup. However, replication increases the cost 
of consistency maintenance. 

The essential task of data security is to prevent any 
unauthorized third party from revealing or modifying the 
data. Confidentiality can be achieved by using encryption, 
while data integrity can be achieved by using digital 
signatures and/or MAC. During transmit the data can be 
protected by using protocols such as SSL [9] and IPSec 
[18]. Meanwhile, at the storage the data confidentiality can 
be achieved using user encryption schemes. Variant cipher 
schemes are proposed for this purpose including the new 
designs we mentioned in previous section, eSTREAM 
project [7]. 

To be robust against cryptanalysis, the key sharing [17] 
and key management [24] are also critical part in the 
context. Special care has to be taken while storing, 
archiving, and deleting key materials. Another important 
research area is the key recovery system [6], which helps the 
users to decrypt the ciphertext under certain conditions. 

Considering the constraints in mobile devices and the 
asymmetric power available to the adversary, there is no 
existing solution can be adopted directly to address the data 
security question in mobile devices. The proposed project is 
to investigate more robust stream cipher scheme by 
exploring more flexible keystream generation methods and 
more secure keystream management approach. The detailed 
discussion of our proposed research works is presented in 
the next section. 

3. Self-Encryption Scheme 
This section consists of two parts. First of all, we will 

introduce a framework under which the sensitive and/or 
private data are separated and stored in a distributed 
manner. Secondly, we will specify the detailed design of our 
SE scheme.  

A. Framework of SE Scheme 
Considering the fact that generally mobile devices do not 

possess as many resources as normal computers, it is very 
challenging to prevent an adversary from breaking the 
embedded cryptographic algorithm when the mobile devices 
are captured. It is also not desirable to implement a complex 
computing intensive encryption/decryption scheme in a 
mobile device. Therefore, the rationale of this project is to 
investigate a novel light-weight approach to protect the 
information effectively even if an adversary has good 
knowledge of the encryption algorithm and many more 
resources to break the cryptography. 

To reach this goal, our essential idea is that an adversary 
can only obtain part of the data from the mobile device 
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alone, which is not enough to reveal any useful information. 
As illustrated by a scenario shown in Figure 1, the sensitive 
data is broken into two parts using our self-encryption 
stream cipher scheme. The major part (Part A: ciphertext) is 
stored in the mobile device carried by the company 
employee, and the minor part (Part B: keystream + other 
parameters) is protected in the secure server of the 
company. Part A is encrypted using part B. When the user 
needs to access the data, he or she has to input a correct PIN 
to pass the authentication procedure. Then the server will 
send part B to decrypt part A and merge them together to 
recover the original plaintext. When a mobile device is lost, 
at most the adversary can access the part A, from which it is 
computationally infeasible to get meaningful information. 

 
Figure 1. Overview of the Self-Encryption framework. 

B. Self-Encryption Scheme 
Similar as general stream cipher, the proposed SE stream 

cipher also encrypts the plaintext and decrypts the ciphertext 
by adding bitwise a keystream:  

Ciphertext = Plaintext ⊕ Keystream (1) 
The keystream generator consists of two parts, a hash 

function H and a random number generator G. The hash 
function takes the user’s PIN and a nonce as input and the 
output is an integer seed, which is used as the seed of the 
random number generator G. The output random number 
sequence {r0, r1, …, rn-1} indicates which bits are selected 
and abstracted from the message (plaintext) to form the 
keystream. Therefore, we have: 

seed = H(PIN, nonce) (2) 
{r0, r1, …, rn-1} = G(seed) (3) 

where {r0, r1, … rn-1} is a random number sequence 
generated by the random number generator G. Since the 
random numbers could beyond the length of the message, 
and the length of the message body decreases as bits are 
abstracted, the pointers to the keystream bits need to be 
normalized following the changing message size. Hence, 
among the n abstracted bits {r'0, r'1, … r'n-1}, the position of 
the k-th bit is: 

r'k = rk mod (m-k) (4) 

The length of the random number sequence n, which is 
also the length of keystream, is determined by the size 
(number of bits) of the message m and the security 
requirement. A longer the keystream provides more robust 
cipher to protect a larger size message. 

To support this flexibility, we define parameter security 
level SL as the security level and Δ as the minimum length 
unit difference between two consecutive security levels. Δ is 
a percentage instead of a fixed bit number. This design leads 
to a unique length of each keystream depending on the 
concrete message size. It makes the brute force attacks 
much difficult as the working load for keystream guess is 
increased exponentially. The keystream length n is 
calculated as: 
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To illustrate the use of equation (5), assume Δ = 5%, for 
example, then the length of the keystream can be 5% of the 
original message size when SL = 1, 10% when SL = 2, 15% 
when SL = 3, and so on. When SL = 0, a default fixed 
keystream length is adopted, where n = 256 bits. Actually, 
further experimental and theoretical analysis will be 
conducted to set the optimal value of Δ. The use of security 
level SL should be specified in more detail in the design of 
the SE protocol in the future.  

Figure 2 presents the working flow of the proposed SE 
stream cipher. When the user has finished editing or reading 
the document, the following works are performed. The seed 
of the random number generator is calculated by the hash 
function taking the user’s PIN and a nonce as the input. 
Then, according to the size of the sensitive document and 
the security level, a sequence of random numbers is 
generated with length n. By treating the file as a binary 
stream, this random number sequence indicates which bits 
in the data file are abstracted to form the keystream. 

 
Figure 2. SE Scheme Working Flow Illustration. 

Then the ciphertext is calculated as normal stream cipher 
does. The ciphertext is stored in the mobile device, the 
keystream, user’s PIN, and the nonce are stored the secure 
server in the company. We will investigate the tradeoff 
between the performance and security regarding the 
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information to be transferred back to the server. For 
instance, maybe it is more secure not to transfer the user’s 
PIN and nonce, instead, backing up the sequence {r'0, r'1, … 
r'n-1} is better. 

Comparing to existing stream cipher schemes, 
computationally the proposed SE scheme is much more 
robust. The length of the keystream is not fixed except when 
the default value (256) is adopted, if the user selected 
security level SL = 0. This raises the bar of brute force 
attackers, the complexity is increased to O(2m). 
Furthermore, to recover the original data stream, the 
adversary needs to insert every bit of the keystream back 
correctly. The permutation in this operation is: 
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The complexity of this part is O(mn). Then the total 
complexity is O(2mmn), which is much robust than the 
reported modern stream cipher schemes. 

4. SE Protocol Design 
To secure the sensitive data in mobile devices, a protocol 

set is mandatory to support the functionalities of the SE 
stream cipher, the AD agent, and the server. In addition, the 
protocol specifies the behavior of the whole system. At the 
mobile device side, the major functions include:  

1) Setting up connection with the remote server;  
2) Retrieving the keystream and nonce for local 

decryption;  
3) Generating a new keystream with a new nonce and 

encrypting the document; and 
4) Transferring the updated keystream and new nonce 

back to server.  
At the server side, the SE protocol supports two working 

model: normal model and emergent model. As implied by 
its name, the normal model (NM) consists of the working 
flow when the mobile device is used normally by the 
legitimate user. The emergent model (EM) is a status that is 
triggered when a mobile device is reported lost. In fact, EM 
specifies the countermeasures to be executed when the 
device is in the hand of an adversary. Figure 3 illustrates 
flow charts of both sides in our proposed SE protocol. 

 
Figure 3. SE Protocol Working Flow Chart. 

When a mobile device is turned on and trying to setup 
connection with the server through the network, the first 
action the server takes is to check whether this mobile 
device is reported lost. For this purpose, the server 
maintains a list of reported lost devices. When the mobile 
device is not in the lost list, the server continues working in 
the normal model.  

As presented along the path in the middle of Figure 3, the 
server checks the user’s PIN, provides the keystream and 
nonce to mobile device allowing legitimate user edit/read 
the document. When a user finishes her work, a new 
keystream and nonce are sent back and stored in the server. 
During this procedure, if the input PIN error happens three 
times, the server will suspend the account but won’t enter 
the emergent model. 

In contrast, if the device matches a record in the lost list, 
the server enters the emergent model. It will ignore the 
received PIN and automatically reject the requirement of 
keystream materials. The further activities depend on the 
user’s security setting. If the user has explicitly required, the 
server will destruct the decryption materials permanently. 

5. Conclusions and Discussions 
Lack of effective protection of sensitive data in mobile 

devices is a major concern that prevents the mobile devices 
from being used widely as part of enterprise networks or 
personal area networks. The proposed SE system will 
remove the barrier and enable employees to enjoy the high 
efficiency and convenience brought by mobile devices. It 
will lead to another wave of prosperity of wireless networks 
and pervasive computing.  

Physical attacks have been proved effective in breaking 
some well designed ciphers in practice [13]. Unfortunately, 
it is challenging to designers to theoretically investigate the 
robustness of a cipher scheme against various physical 
attacks. To address this problem, a prototype is going to be 
implemented on top of reconfigurable hardware devices (i.e. 
FPGAs). Particularly we will study the behavior of our SE 
prototype under local non-invasive attacks including timing 
analysis and differential power analysis (DPA) [20]. 

 
Figure 4. Prototype Implementation & Experiment  

Platform Construction. 
Figure 4 presents the prototype implementation and 

physical attack study system architecture. At the server side, 
we plan to implement the SE protocol on a NetFPGA board 
[22] inserted in a Dell 2950 server. As the mobile device 
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side, we are considering to implement the SE stream cipher 
scheme and SE protocol on another NetFPGA board 
inserted in a PC, which is connected to the network through 
wireless connection. 

Devices such as oscillograph will be used to monitor and 
record the electromagnetic leakage when the SE stream 
cipher is being executed to encrypt/decrypt the data. As 
shown in middle of Fig. 4, an adversary may perform DPA 
attacks by analyzing the variance of leaking electromagnetic 
wave. Actually, we expect that our SE stream is not 
vulnerable to DPA attacks due to the uniqueness of each 
keystream and a much larger keystream space. However, we 
are also prepared to improve the implementation if 
vulnerabilities are observed on the prototype. 

Aside from investigating the potential security 
vulnerability, we will study the performance issues using 
the prototype in the context of real applications. Considering 
the resource constraints in the typical mobile devices, the 
proposed SE stream cipher is hardware-oriented and aims at 
light-weighted design. We will explore the tradeoffs 
between the performance and resource utility by the SE 
system. 
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